Geosynthetic reinforcement in road pavements

- Asphalt reinforcement
 - fatigue cracking and reflective cracking

- Reinforcement in granular layers
 - Reduce rutting, reduce thickness

- Reinforcement at subsoil
 - Access in construction period
 - Improve bearing capacity of underground
 - Reduce deformation from frost heave
Reinforcement potential benefits

- Increased resistance to fatigue cracking
- Reduced differential settlements
- Reduced rutting – pavement and subsoil
- Reduce reflective cracking
- Reduce cracking from frost heave
- Potential use of low(er) quality material
- Reduced maintenance cost
- Increased bearing capacity
- Reduced deformation and increased bearing capacity access roads/temporary road
Reinforcement in asphalt pavements

- Propagation cracking from underlaying layer
 - Reflective cracking
 - Dynamic loads
- Temperature induced cracking
 - Cracks perpendicular to the road
 - Static loads
- Frost heave
 - Longitudinal direction
 - Potential LARGE cracks (dm)
 - Large forces, static loads
- Road widening/edge deformations
 - Longitudinal cracks at road edge
 - Static loads
Cracking mechanisms

Cracking from edge deformation

Cracking from frost heave
Cracking mechanisms

Cracking from rutting

Reflective Cracking

Photo: HUESKER
Reinforcement in asphalt overlays – Design and experience

- Empirically based design
 - Loading based on evaluation of deterioration mechanisms
 - Solution and type of reinforcement from experience
 - Product specific design and installation guidelines
 - Recommendations for design in proposed guidelines - NPRA

- Experience
 - Edge deformations - high strength grid - good experience
 - Reflective cracking – large variety of solutions - variable results (SRI, Composites, grid)
 - Rutting – Grid reinforcement - do not reduce rutting but may reduce cracking from rutting (and subsequently also rutting)
 - Frost heave – high strength grid –do not reduce frost heave but may reduce cracking
 - Temperature cracks - grid reinforcement – continuous reinforcement to be effective
 - Installation crucial for the effect
Challenges for asphalt reinforcement

Wrinkles and overlap of reinforcement

Installation and traffic on reinforcement

Debonding
Function mechanisms - soft subsoil

Improve bearing capacity
Mechanism – soft subsoil

Hammock effect
Function mechanisms
Granular layers

Improved horizontal support
R&D project - GeoRePave

■ **Aim**
 ■ Develop design methods for reinforcement in bearing layers

■ **Includes**
 ■ Model testing
 ■ Laboratory with cyclic loading
 ■ Heavy traffic simulator
 ■ Test sections with different types of reinforcements
 ■ Testing of material
 ■ Static triaxial testing
 ■ Cyclic triaxial testing with reinforcement
 ■ Pull out test
 ■ Numerical modelling
 ■ FEM analyses of reinforced road
Laboratory– full scale testing

Cyclic load tests
MSU/GTX

Heavy traffic -simulator
CRRL
Cyclic triaxial testing - NTNU

- With and without reinforcement
- Reinforcement
 - Stiff grid
 - Flexibel grid
 - Woven slit film
 - Composite
Numerical modelling

2-D, Axial symmetry

Volume elements for subsoil, granular material and asphalt

Membrane element for reinforcement

550 kPa, \(r = 150 \) mm

Asphalt
Granular bearing layer
Subsoil

Symmetry axis

Infinite-element
Results GeoRePave

- Test verify effect from reinforcement
 - Reinforcement reduce plastic deformations
 - Numerical modelling do not show the same effect
- Cyklic triax: Reinforced samples can withstand 5 – 10 times the number of loads compared to unreinforced
 - No significant difference between types of reinforcement is found
 - Improved understanding of mechanisms
- Proposal for design model developed
 - http://www.coe.montana.edu/wti/wti/display.php?id=89
 - Large number of input parameters (adequate testing methods missing)
Effect: Lateral restrain

- Proper desing ⇒ small deformations
 - Low reinforcement mobilisations – stiffness more important than strength
 - Interaction reinforcement granular particles is crucial for effect
- Bearing layer consisting of single particles
- Elastic stiffness of structure not influenced by reinforcement (?)
- Permanent deformation is the sum of ”mikroskopic” changing for each load pass
- Reinforcement can prevent the ”micro-deformations”
 - Reduces the accumulated permanent deformations – ie reduced rutting
Effect-increased lateral stress

increased resistance against deformations

- Increased horizontal stress - less permanent deformations
- Existing design methods are not sufficient

- Reinforcement potentially reducing the degree of mobilisation
Design reinforcement in granular layers

- Field experience-reinforcement reduce permanent deformations
 - Edge deformations- good results
 - Reduced rutting – variable results

- Application
 - Proper design, good quality well compacted granular material- sufficient stiffness
 - Sufficient elastic stiffness – no need for reinforcement
 - Upgrading and rehabilitation of existing roads
 - Reinforcement to reduce deformations

- Design requirements:
 - Reduced rutting, i.e increased traffic volume
 - Potential reduction of bearing layer – NOTE: frost protection
Existing guidelines

- General design recommendations:
 - Norway, håndbok 018: No reduction of thickness
 - Sweden, Finland and Estonia: No guidelines existing

- Product specific design methods
 - Based on field experiences and some theoretical considerations
 - Product specific—generally not related to product characteristics
 - Some countries use product specific methods

- Proposal for guidelines (NPRA)
 - Structural solutions based on evaluation of deterioration mechanisms
 - Recommendations for reinforcement characteristics
 - Stiffness/rigidity
 - Interaction with granular material (friction, interlocking)
 - Resistance to damage – Note: Installation at low temperature
 - Handling and installation properties
Verification of effect

- Falling weight deflectometer
 - SINTEF: Method not suitable

- Plate load test (Ev2), commonly used for verification of improved bearing capacity (Germany, UK)
 - Requires large deformations before noticeable effect
 - Can be used for verification with reinforcement on subsoil
 - Not suitable for verification in bearing layer
Reinforcement of asphalt pavement
Reflective cracking - Svalbard
Construction traffic on base layer with reinforcement

Photo: Jon Hauge
Access roads
Bearing capacity of soft subsoil

Photos: Statens Vegvesen

Lofast, Northern Norway
Test sections - reinforced accessroad

Photo: SINTEF
Test section - excavation

Reinforcement type 1 Unreinforced Reinforcement type 2

Photos: SINTEF
Bearing capacity – thawing period

Asphalt pavement on unsurfaced road

Increase bearing capacity

Reduce rutting

Photo: NTNU
Hitra-Norway
Upgrading of unsurfaced road

Typical pavement section

- 4 cm Asphalt, 100 kg/m²
- 15 cm, 0-30 mm Crushed Gravel/Crushed stone
- Geogrid
- Nonwoven geotextile
- Old road structure / Peat
Separation geotextile + grid reinforcement

Variable substructure conditions
No effect on elastic stiffness (falling weight)
Reduced rutting
Not basis for evaluation of effects of different grids

3 different types of reinforcement
Summary - applications

- Reinforcement in Asphalt overlays
 - Usually for upgrading and rehabilitation (Repaving)
 - Solutions related to deterioration mechanisms (evaluation of cracking of existing pavement)
 - Steel grid, glassfibre grid, polymeric grids, Geotextiles (SRI), geocomposites

- Reinforcement in granular layers
 - Surfaced roads (rehabilitation and upgrading)
 - Main use: Rutting and edge deformations
 - Polymeric grids
 - Unsurfaced roads (access roads, gravel roads)
 - Main use: Bearing capacity of subsoil
 - High strength geotextiles, polymeric grids, geocomposites
Effect of reinforcement

Heavy traffic loads

Low bearing capacity

High degree of mobilisation-large deformations

Timber traffic/Fish transport in thawing period
Recent publications
Gualadaruja 2010

Geosynthetics in Pavement Reinforcement Applications

Steven W. Perkins
Montana State University

Barry R. Christopher
Christopher Consultants

Nicholas Thom
University of Nottingham

Guillermo Montestruque
(Please complete)

Leena Korkiala-Tanttu
Pöyry Infra Oy

Arnstein Wath
SINTEF

Keywords: geosynthetic, pavement, reinforcement, subgrade, base, asphalt, modeling
Challenges

- Good models to describe function and effect
- Recommended solutions and design methods
- Product independent requirements and specifications
- Guidelines for installation and control
- Methods for verification of effect
Conclusions

- More than 40 years of experience with Reinforcement in roads
 - Nordic countries are using considerable volumes
- Reinforcement in asphalt overlays and granular materials
- Prime applications
 - Unpaved roads/Access roads
 - Upgrading/rehabilitation of existing roads
- Experienced based solutions and design – mostly product specific
- Variable results – highly dependent on quality of installation
- General design models for design is lacking
- Methods for verification of effect is lacking
So what?

- **Product certification**
 - NorGeospec –extended to function reinforcement
 - Gives characteristics to be verified for this function
 - Certification of characteristics to ensure "fit for use"

- **Proposal R&D: Reinforcement in roads**
 - Nordic co-operation project
 - Quantifying the Influence of Geosynthetics on Pavement performance
 - Design models
 - Recommendations/guidelines for design

- **Proposal R&D: Installation of geosynthetics in cold climate**
 - Experiences from installation of geosynthetics
 - Guidelines for installation and control
Let's hit the road!
Thank you for your attention!