NorGeoSpec 2012 Product Certificate

Quality Product Certification Reinforcement

This product has been found to be fit for use in accordance with NorGeoSpec 2012 System for the above given function.

Certificate no.:	NGS-50343
Date:	01.08.2023
Valid until:	31.07.2025
Manufacturer:	TenCate Geosynthetics Austria GmbH
Product:	Miragrid GX 55/55
Product Type:	GGR
Raw material:	PET
Function:	Reinforcement

Issued by

Austr- leves

Christian Recker, SINTEF project manager

Approved by

Arnstein Watn, Head of the Technical committee

The products are regularly audited and tested to verify that the characteristics fulfil the NorGeoSpec 2012 Rev.: 01/14.12.2016 requirements. Approved by the NorGeoSpec Technical committee: 22.05.2023

Quality Product Certification Reinforcement

Characteristic		Standard	Unit	Declared value	Declared tolerance	Max. tolerance	Certification value
Mass per unit area		EN ISO 9864	g/m²	365	± 36.5	± 36.5	328.5 – 401.5
Dimension		NorGeoSpec 2012			1		
Tensile elements	MD	Annex F	Production width ¹	210	± 0	± 0	210
	CMD	Annex F	Elements/m	36.5	± 2.2		34.3 – 38.7
Grid apertures	MD	Annex F	mm	21	± 3.1	± 3.2	17.9 – 24.1
	CMD	Annex F	mm	20	± 3.0	± 3.0	17.0 – 23.0
Mechanical tests							
Nominal tensile strength	MD	EN ISO 10319	kN/m	58.00	-2.90	-2.90	55.10
	CMD	EN ISO 10319	kN/m	58.00	-2.90	-2.90	55.10
Tensile strain at nominal strength	MD	EN ISO 10319	%	10.5	± 2.1	± 2.1	8.4 – 12.6
	CMD	EN ISO 10319	%	10.0	± 2.0	± 2.0	8.0 – 12.0
Tensile stiffness at 2% tensile strain	MD	EN ISO 10319	kN/m	500	- 100.0	- 100.0	400
	CMD	EN ISO 10319	kN/m	500	- 100.0	- 100.0	400
Tensile stiffness at 5% tensile strain	MD	EN ISO 10319	kN/m	305	- 61.0	- 61.0	244
	CMD	EN ISO 10319	kN/m	305	- 61.0	- 61.0	244
Tensile stiffness at 10% tensile strain	MD	EN ISO 10319	kN/m				
	CMD	EN ISO 10319	kN/m				
Static puncture test		EN ISO 12236	KN				
Dynamic perforation resistance		EN ISO 13433	mm				
Durability (Declared value)							
Service life			years	25		50	100

¹ Production width – 5.20 m

Declared values Reinforcement

Declared values									
Reduction factor for creep rupture ^{1) 2)}	RF _{CR}	1.58	KIWA test report: 1.6/24520/0354.0.1-2019e						
Reduction factor for environmental effects	RF _{CH}								
Chemical				Application in natural soils at a pH-value between 4 and 9 and a soil temperature <25°C					
Oxidation		n.r.							
Hydrolysis		1.04	SKZ test report: 89363/09-II						
Reduction factor for weathering	RFw								
Or max. exposure time									
1 month		х							
2 weeks									
1 day									
Reduction factor for installation damage	$RF_{ID,fine}$	1.10	$RF_{ID,medium}$	1.15	RF _{ID coarse}	1.45			
Used test method	Baugrund W	Baugrund Wien 10-2022-01							
Compaction	Min. compaction depth above geogrid 320 mm; Ride-on steel-wheeled roller (12400 kg); Relative density > 9								
Particle size	$RFI_{D medium} = 0$	$\label{eq:RF_ID_fine} \begin{split} & RF_{IDfine} = slightly\;plastic\;clay,slightly\;sandy\;with\;D_{90} = 1.5\;mm\;and\;D_{60} = 0.06\;mm\;RFI_{Dmedum} = crushed\;lime-\;/\;dolomite\;rock\;with\;D_{90} = 26\;mm\;and\;D_{60} = 11\;mm\;RF_{IDcoarse} = crushed\;concrete\;with\;D_{90} = 63\;mm\;and\;D_{60} = 28\;mm\;mm\;mm\;RF_{IDcoarse} = crushed\;concrete\;with\;D_{90} = 63\;mm\;and\;D_{60} = 28\;mm\;mm\;mm\;RF_{IDcoarse} = crushed\;concrete\;with\;D_{90} = 63\;mm\;and\;D_{60} = 28\;mm\;mm\;mm\;RF_{10coarse} = crushed\;concrete\;with\;D_{90} = 63\;mm\;and\;D_{60} = 28\;mm\;mm\;mm\;RF_{10coarse} = crushed\;concrete\;with\;D_{90} = 63\;mm\;and\;D_{60} = 28\;mm\;mm\;mm\;concrete\;mm\;\mathsf$							