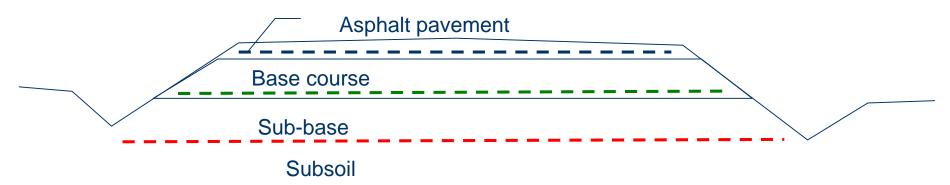
Geosynthetic reinforcement in road pavements Guidelines and experiences

Photo: SINTEF

Hitra in Trøndelag 2008

Myre i Lofoten 1984


Arnstein Watn, Senior Advisor SINTEF/ Managing Director WatnConsult AS

Geosynthetic reinforcement in road pavements

- Asphalt reinforcement
 - fatigue cracking and reflective cracking
- Reinforcement in granular layers
 - Reduce rutting, reduce thickness
- Reinforcement at subsoil
 - Access in construction period
 - Improve bearing capacity of underground
 - Reduce deformation from frost heave

Reinforcement potential benefits

- Increased resistance to fatigue cracking
- Reduced differential settlements
- Reduced rutting pavement and subsoil
- Reduce reflective cracking
- Reduce cracking from frost heave
- Potential use of low(er) quality material
- Reduced maintenance cost
- Increased bearing capacity
- Reduced deformation and increased bearing capacity access roads/temporary road

Reinforcement in asphalt pavements

- Propagation cracking from underlaying layer
 - Reflective cracking
 - Dynamic loads
- Temperature induced cracking
 - Cracks perpendicular to the road
 - Static loads
- Frost heave
 - Longitudinal direction
 - Potential LARGE cracks (dm)
 - Large forces, static loads
- Road widening/edge deformations
 - Longitudinal cracks at road edge
 - Static loads

Cracking mechanisms

Photo: Jon Hauge

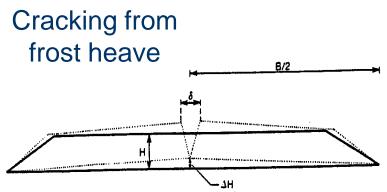
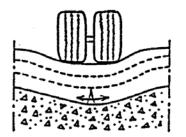
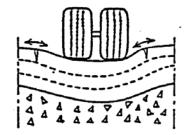

Cracking from edge deformation

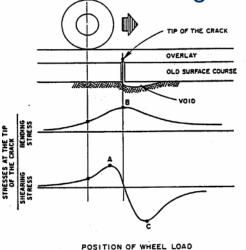
Photo: NTNU





Cracking mechanisms

Cracking from rutting



Reflective Cracking

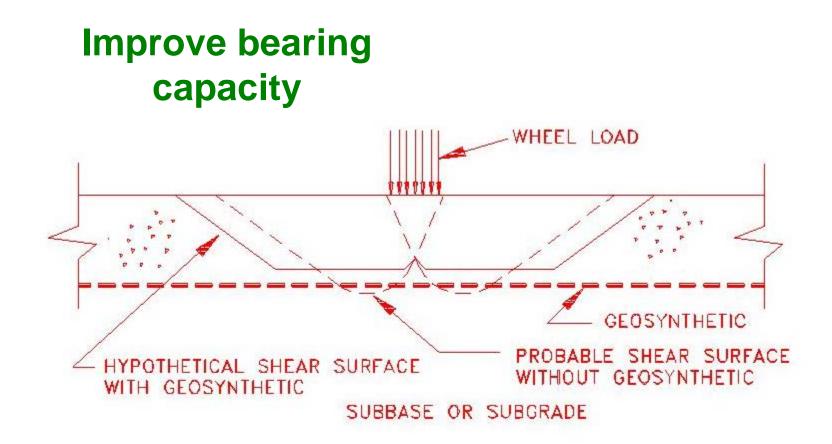
Photo: HUESKER

Reinforcement in asphalt overlays – Design and experience

- Empirically based design
 - Loading based on evaluation of deterioration mechanisms
 - Solution and type of reinforcement from experience
 - Product specific design and installation guidelines
 - Recommendations for design in proposed guidelines NPRA
- Experience
 - Edge deformations high strength grid good experience
 - Reflective cracking large variety of solutions variable results (SRI, Composits, grid)
 - Rutting Grid reinforcement do not reduce rutting but may reduce cracking from rutting (and subsequently also rutting)
 - Frost heave high strength grid –do not reduce frost heave but may reduce cracking
 - Temperature cracks grid reinforcement continuous reinforcement to be effective
 - Installation crucial for the effect

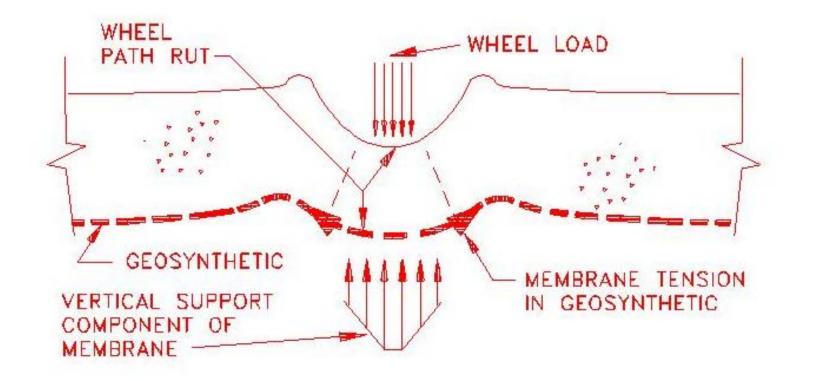
Challenges for asphalt reinforcement

Wrinkles and overlap of reinforcement

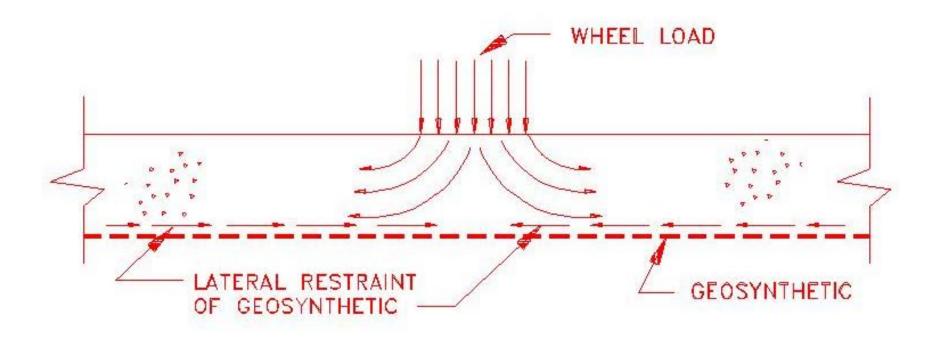

Installation and traffic on reinforcement

SINTEF Building and Infrastructure

Debonding


Function mechanisms - soft subsoil

Mechanism – soft subsoil


Hammock effect

Function mechanisms Granular layers

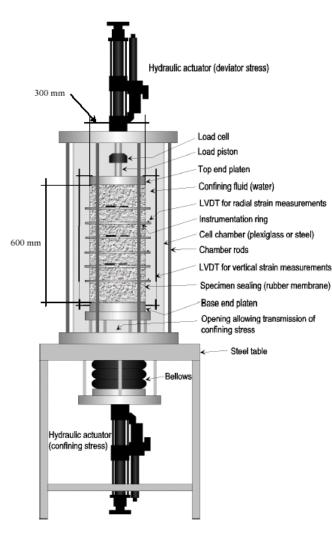
Improved horisontal support

R&D project - GeoRePave

Aim

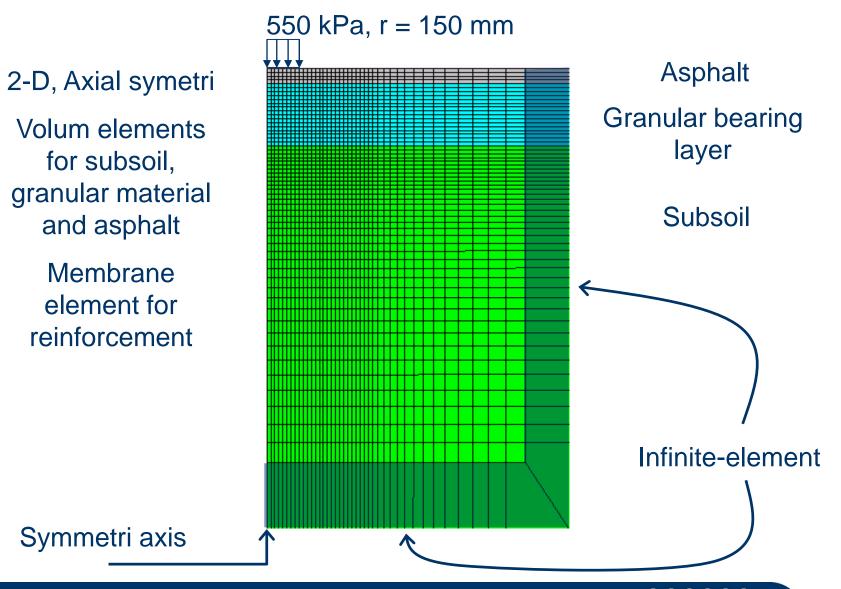
- Develop design methods for reinforcement in bearing layers
- Includes
 - Model testing
 - Laboratory with cyclic loading
 - Heavy traffic simulator
 - Test sections with different types of reinforcements
 - Testing of material
 - Static triaxial testing
 - Cyclic triaxial testing with reinforcemetn
 - Pull out test
 - Numerical modelling
 - FEM analyses of reinforced road

Laboratory- full scale testing


Heavy traffic -simulator CRRL

Cyclic load tests MSU/GTX

Cyclic triaxial testing - NTNU



- With and without reinforcement
 - Reinforcement
 - Stiff grid
 - Flexibel grid
 - Woven slit film
 - Composite

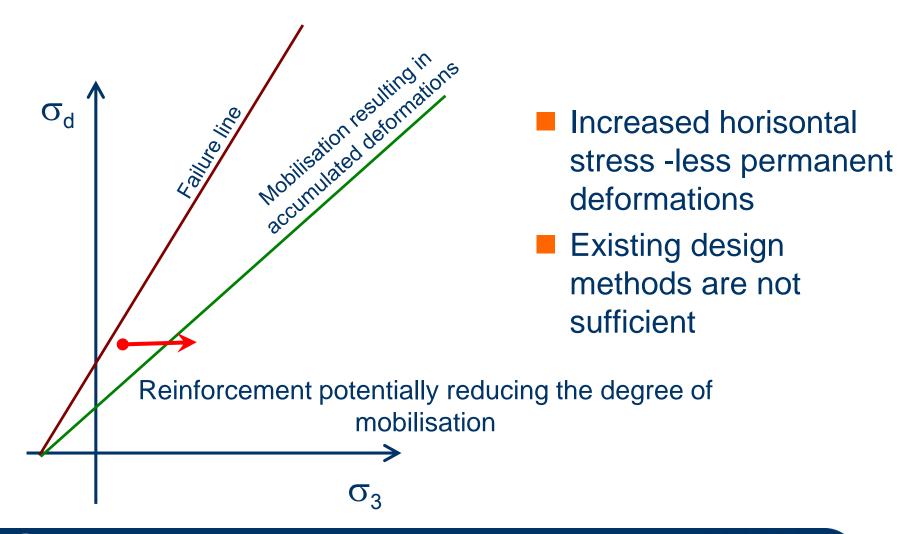
Numerical modelling

Results GeoRePave

Test verify effect from reinforcement

- Reinforcement reduce plastic deformations
- Numerical modelling do not show the same effect
- Cyklic triax: Reinforced samples can withstand 5 10 times the number of loads compared to unreinforced
 - No significant difference between types of reinforcement is found
 - Improved understanding of mechanisms
- Proposal for design model developed
 - <u>http://www.coe.montana.edu/wti/wti/display.php?id=89</u>.
 - Large number of input parameters (adequate testing methods missing)

Effect: Lateral restrain


■ Proper desing ⇒ small deformations

- Low reinforcement mobilisations stiffness more important than strength
- Interaction reinforcement granular particles is cruicial for effect
- Bearing layer consisting of single particles
- Elastic stiffness of structure not influenced by reinforcement (?)
- Permanent deformation is the sum of "mikroskopic" changing for each load pass
- Reinforcement can prevent the "micro-deformations"
 - Reduces the accumulated permanent deformations ie reduced rutting

() SINTEF

Effect-increased lateral stress

increased resistance against deformations

Design reinforcement in granular layers

- Field experience-reinforcement reduce permanent deformations
 - Edge deformations- good results
 - Reduced rutting variable results
- Application
 - Proper design, good quality well compacted granular materialsufficient stiffness
 - Sufficient elastic stiffness no need for reinforcement
 - Upgrading and rehabilitaton of existing roads
 - Reinforcement to reduce deformations
- Design requirements:
 - Reduced rutting, i.e increased traffic volume
 - Potential reduction of bearing layer NOTE: frost protection

Existing guidelines

General design recommendations:

- Norway, håndbok 018: No reduction of thickness
- Sweden, Finland and Estonia: No guidelines existing

Product specific design methods

- Based on field experiences and som theoretical considerations
- Product specific-generaly not related to product characteristics
- Some countries use product specific methods

Proposal for guidelines (NPRA)

- Structural solutions based on evaluation of deterioration mechanisms
- Recommendations for reinforcement characteristics
 - Stiffness/rigidity
 - Interaction with granular material (friction, interlocking)
 - Resistance to damage Note: Installation at low temperature
 - Handling and installation properties

Verification of effect

Falling weight deflectometer

SINTEF: Method not suitable

Plate load test (Ev2), commonly used for verification of improvd bearing capacity (Germany, UK)

- Requires large deformations before noticeable effect
- Can be used for verification with reinforcement on subsoil
- Not suitable for verification in bearing layer

Reinforcment of asphalt pavement Reflective cracking - Svalbard

Construction traffic on base layer with reinforcement

Photo: Jon Hauge

Access roads Bearing capacity of soft subsoil

<image>

Photos: Statens Vegvesen

Lofast, Northern Norway

Test sections - reinforced accessroad

Photo: SINTEF

SINTEF Building and Infrastructure

Test section - excavation

Photos: SINTEF

Reinforcment type 1

Unreinforced

Reinforcement type 2

Bearing capacity – thawing period

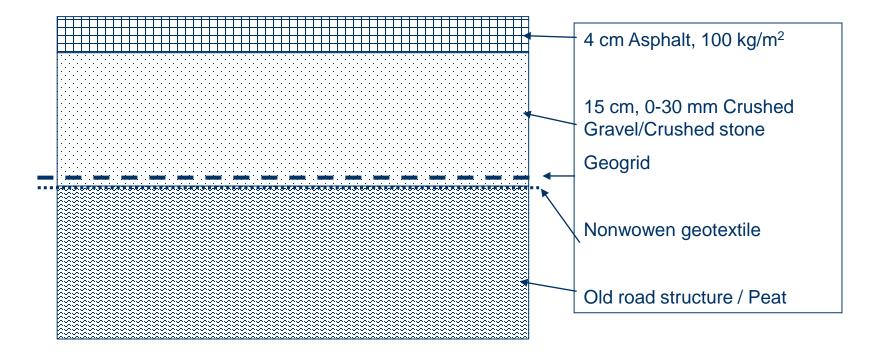


Photo: NTNU

Hitra-Norway Upgrading of unsurfaced road

Typical pavement section

Separation geotextile + grid reinforcement

Variable substructure conditions No effect on elastic stiffness (falling weight) Reduced rutting Not basis for evalution of effects of different grids

3 different types of reinforcement

Photo: SINTEF

() SINTEF

Summary - applications

Reinforcement in Asphalt overlays

- Usually for upgrading and rehabilitation (Repaving)
- Solutions related to deterioration mechanims (evaluation of cracking of existing pavement)
- Steel grid, glassfibre grid, polymeric grids, Geotextiles (SRI), geocomposites
- Reinforcement in granular layers
 - Surfaced roads (rehabilitation and upgrading)
 - Main use: Rutting and edge deformations
 - Polymeric grids
 - Unsurfaced roads (access roads, gravel roads)
 - Main use: Bearing capacity of subsoil
 - High strength geotextiles, polymeric grids, geocomposites

Effect of reinforcement

Heavy traffic loads

Low bearing capacity

High degree of mobilisation-large deformations

Timber traffic/Fish transport in thawing period

Recent publications Gualadaruja 2010

Geosynthetics in Pavement Reinforcement Applications

Steven W. Perkins Montana State University

Barry R. Christopher Christopher Consultants

Nicholas Thom University of Nottingham

Guillermo Montestruque (Please complete)

Leena Korkiala-Tanttu Pöyry Infra Oy

Arnstein Watn SINTEF

Keywords: geosynthetic, pavement, reinforcement, subgrade, base, asphalt, modeling

.

Challenges

Good models to describe function and effect

Recommended solutions and design methods

Product independent requirements and specifications

Guidelines for installation and control

Methods for verification of effect

Conclusions

More than 40 years of experience with Reinforcement in roads

- Nordic countries are using considerable volumes
- Reinforcement in asphalt overlays and granular materials

Prime applications

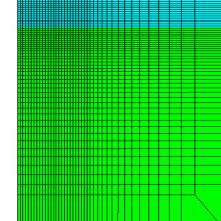
- Unpaved roads/Access roads
- Upgrading/rehabilitation of existing roads
- Experienced based solutions and design mostly product specific
- Variable results highly dependent on quality of installation
- General design models for design is lacking
- Methods for verification of effect is lacking

So what?

Product certification

- NorGeospec –extended to function reinforcement
 - Gives characteristics to be verified for this function
- Certification of characteristics to ensure "fit for use"
- Proposal R&D: Reinforcement in roads
 - Nordic co-operation project
 - Quantifying the Influence of Geosynthrtics on Pavement performance
 - Design models
 - Recommendations/guidelines for design

Proposal R&D: Installation of geosynthetics in cold climate


- Experiences from installation of geosynthteics
- Guidelines for installation and control

Let's hit the road! Thank you for your attention!

Photo: SINTEF

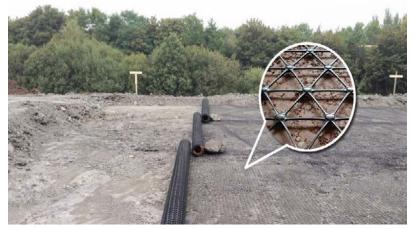
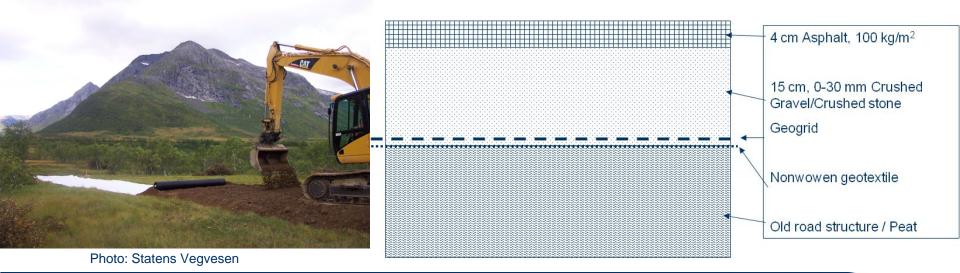



Photo: TENSAR

