

Jean Claude Juncker:

□ New boost for jobs, growth and investment: It has been recognized that Europe must not stifle innovation and competitiveness with too prescriptive and detailed regulations, notably when it comes to SMEs.

- Source: Frontier Economics
- > Increasing the administrative costs of market entry can have a significant negative impact on productivity growth
- > A reduction in product market regulation has a positive impact on competition which increases innovation and therefore productivity

[&]quot;Significant resource transferred from innovation to administration to prepare DoPs" CPR hearing comment from unnamed manufacturer.

Certification – experience show it is necessary

But quality comes with a cost...

- + Geotextile use in Finland, Sweden and Norway is widespread
- + Quality certification by 3rd party increase customer confidence
- + Prototype certification
- + On-site testing on random basis
- + Consequences if a product fails in prototype- or on-site test
- + Higher prices on quality marked products
- Joint and several cost distribution (no incentive to focus on quality)
- Branding of NGS as quality mark

Classification can not replace good design

Separation / filtration design – not a simple dicipline

LESSON LEARNED

from this successful method

What started as technology transfer

from geotechnical engineering to geosynthetics engineering ended as technology transfer

from geosynthetics engineering to geotechnical engineering.

Geosynthetics engineering is a new discipline with innovative research that can benefit a mature discipline such as geotechnical engineering.

Filtration – more than 20 design criterias

- General acceptance that the soil must be included in the design

Issues (Koerner):

- Steady flow / reversing flow situations
- Thick / thin geotextiles (Surface / in-depth filtration)
- · Cohesionless fine grained silts
- Cohesionsless gap-graded sandy silts
- Dispersive clays
- Ochre forming soils
- Lack of intimate contact between soil and geotextile
- •

Source	Criterion	Remarks				
Calhoun (1972)	$O_{95}/D_{85} \leq 1$	Wovens, soils with ≤50% passing #200 sieve				
	$O_{95} \le 0.2 \text{ mm}$	Wovens, cohesive soils				
Zitscher, 1975 (from Rankilor, 1981)	$O_{50}/D_{50} \le 1.7-2.7$	Wovens, soils with $C_e \le 2$, $D_{50} = .1$ to .2mm				
2/11/100/2007 EW	$O_{50}/D_{50} \le 25-37$	Nonwoven, cohesive soils				
Ogink (1975)	$O_{90}/D_{90} \le 1$ $O_{90}/D_{90} \le 1.8$	Wovens Nonwovens				
Sweetland (1977)	$O_{15}/D_{85} \leq 1$	Nonwovens, soils with C _u = 1.5 Nonwovens, soils with C _u = 4				
Company (Selfing)	$O_{15}/D_{15} \le 1$	10 EN EN EN EN EN				
Rankilor (1981)	$O_{50}/D_{85} \leq 1$	Nonwovens, soils with 0.02 ≤ D ₈₅ ≤ 0.25 mm				
	$O_{15}/D_{15} \le 1$	Nonwovens, soils with $D_{85} > 0.25$ mm				
Schober and Teindl (1979) with no factor of safety	$O_{90}/D_{50} \le 2.5-4.5$	Woven & thin nonwovens, dependent on C_u Thick nonwovens, dependent on C_s - silt and sand soils				
	$O_{90}/D_{50} \le 4.5-7.5$					
Millar, Ho and Turnbull (1980)	$O_{50}/D_{85} \le 1$	Wovens and nonwovens				
Giroud (1982)	$O_{95}/D_{50} \le (9-18)/C_u$	Dependent on soil C _u and density; assumes fines in soil migrate for large C				
Carroll (1983)	$O_{95}/D_{85} \le 2-3$	Wovens and nonwovens				
Christopher and Holtz (1985)	$O_{95}/D_{85} \le 1-2$	Dependent on soil type and C _u ; dynamic, pulsating & cyclic flow, if soi				
	$O_{95}/D_{15} \le 1$ or $O_{50}/D_{85} \le 0.5$	can move beneath fabric				
French Committee on Geotextiles and Geomem- branes (1986)	$O_f/D_{85} \le 0.38$ - 1.25	Dependent on soil type, compaction, hydraulic & application conditions				
Fischer, Christopher and Holtz (1990)	$O_{50}/D_{85} \le 0.8$ $O_{50}/D_{15} \le 1.8-7.0$ $O_{50}/D_{50} \le 0.8-2.0$	Based on geotextile pore size distribution, dependent on $C_{\mbox{\tiny u}}$ of soil				

Therefore,
a geotextile filter is safer
if it is designed with
the retention criterion
that takes into account
the internal stability
of the soil.

The same can be done with granular filters.

NGS is OK for most cases

- but it is conservative and does not support innovation

Subsoil:

The subsoil is divided into two groups, Soft and Firm; these groups can be categorised according to soil type and shear strength:

- Soft soft clay with undrained shear strength
 ≤ 25 kPa, and peat.
- <u>Firm</u> medium and stiff clay with undrained shear strength > 25 kPa, and sand and gravel.

Table 2: Selection of relevant specification profile

SUBSOIL	CONSTRUCTION CONDITIONS	TRAFFIC	MAXIMUM GRAIN SIZE (D _{MAX}) IN FILL MATERIAL (MM)				
			d _{max} <63	63< d _{max} <200	200< d _{max} <500	d _{max} >500	
Soft	Normal	High	3	4	5	5	
		Normal	3	4	4	5	
	Favourable	High	3	3			
		Normal	2	3			
Firm	Normal	High	2	3	3	4	
		Normal	2	2	3	3	
	Favourable	High	2	2			
		Normal	2 ¹⁾	2	1		

Optimize energy index at lowest possible weight!

- and don't mind the separation/filtration?

Function: separation and filtration										
CHARACTERISTIC	UNIT	MAXIMUM TOLERANCE 1)	REQUIRED ²⁾ VALUES CORRESPONDING TO 95% CONFIDENCE LIMIT							
			SPECIFICATION PROFILES							
			1	2	3	4	5			
Min. tensile strength	kN/m	-10 %	6	10	15	20	26			
Min. tensile strain at max. load	%	-20 %	15	20	25	30	35			
Max. cone drop diameter	mm	+25 %	42	36	27	21	12			
Min. energy index	kN/m		1.2	2.1	3.2	4.5	6.5			
Min. velocity index	10 ⁻³ m/s	-30 %	3	3	3	3	3			
Max. char. Opening size, O90	mm	±30 %	0.2	0.2	0.2	0.15	0.15			
Max. tolerance for mass per unit area			±12 %	±12 %	±10 %	±10 %	±10 %			
Max. tolerance for static puncture strength			-10 %							

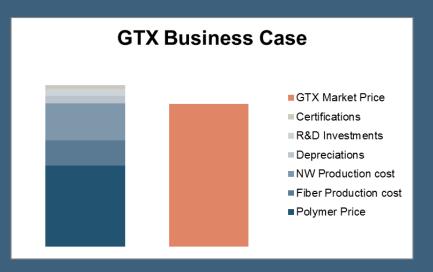
Just as important....

- Most failures are caused by poor design or damage during installation!
- Inspection of incomming goods (is packaging OK, rolls undammaged etc.)
- Installation details who to call if in doubt?

Customer service is a valuable part of Quality!

Classification – a perspective...

Scandinavian internet tender 2016:


- Specification: NGS classes 2, 3 and 4
- · Preferably white color (!)
- · Criteria: Lowest price

Would You invest in GTX production in Scandinavia?

No room for innovation!

Little room for maintenance (= depreciations)

Reduced focus on quality (no premium)

Summary

- Certification is great to ensure customers get good quality.
- Certifications should go hand-in-hand with on-site testing.
- Quality and costs should be inversely proportional!
- Classification is suitable to industrial module components. It does not bring quality into geotechnical engineering.
- Most failures are related to damage during installation and poor design.
 Services like packaging, design service, installation guidelines etc. are not appreciated in the NGS.
- Geotextiles have become a commodity in NGS markets to a point where quality and innovation is compromised.

Thank you!

Questions and comments?